
SMART CONTRACT AUDIT

July 7th, 2021 | v.	1.0

95
Score

PASS
Zokyo’s Security Team has
concluded that this smart
contract passes security
qualifications to be listed on
digital asset exchanges

This document outlines the overall security of the Polars smart contracts, evaluated by Zokyo's
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Polars smart contract codebase for
quality, security, and correctness.

. . .

1

Polars Contract Audit

There were 3 critical issues found during the audit which were successfully resolved.

Contract Status

LOW Risk

Testable Code

The testable code is 99.07%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the Polars team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

Polars Contract Audit

3Auditing Strategy and Techniques Applied

4Summary

5Structure​ ​and​ ​Organization​ ​of​ ​Document

6Manual Review

22Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

22Tests written by Polars team

26Tests written by Zokyo Secured team

3

Polars Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract’s source code was taken from the Polars repository –
https://github.com/yurivin/Polars_Zokyo/commit/d1bd01c000fdc37627eb5dd72ce70eb4b289
481c

Last commit – cb1a81056390857a76f2a15500f1ac3fc57afe7a

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Polars smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

https://github.com/yurivin/Polars_Zokyo/commit/d1bd01c000fdc37627eb5dd72ce70eb4b289481c
https://github.com/yurivin/Polars_Zokyo/commit/d1bd01c000fdc37627eb5dd72ce70eb4b289481c

Summary

. . .

4

Polars Contract Audit

Within the scope of this audit, Zokyo auditing team has reviewed and investigated the
contracts given in order to find vulnerabilities, inefficient gas usage, and operational issues.
All the findings are described in this audit report.

There were 3 critical issues found during the audit. Polars dev team has resolved all of them.
Besides critical issues found, Zokyo auditors have found a couple of more issues with high,
medium, and low levels of severity. Most of these issues were successfully fixed and bear no
risk for the end-user.

Based on the findings and the second review of the fixes made by the Polars team, we can
give a score of 95 to the contracts given.

It is worth mentioning that the contracts are well written and structured and most of the
findings during the audit have no impact on contract performance.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

5

Polars Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Manual Review

. . .

6

Polars Contract Audit

User can’t get governance token unless he is the one who initially
provided it

CRITICAL

Let’s assume User A put a governance token and got his incentive tokens. He sends some of
them to User B. But User B can’t exchange them back to governance, since contract
incentives.sol expects user A. For example in function putIncentivesTokens.

Recommendation:
If this is expected behaviour (incentive tokens aren't supposed to be shared), then please add
a comment that briefly explains why and how the token is supposed to be used.

But if there is no reason for sending incentives tokens anywhere but back to the incentive
contract by the same person who got them.. Then maybe you don’t even have to create a new
token. Simple record in incentives contract is enough.

Partner response for this issue:
Incentives tokens can be shared for their own purposes because they provide the possibility
to receive rewards in other networks. So this is why we need it. The point that users cannot
withdraw more governance tokens from the incentives contract than they put there is just a
part of the logic we expect.

Users can trade Incentives tokens if they want to receive more rewards from specific platform
instance, that is why there is a sense to exchange and share it.

Users may change balance of their incentives tokens to get more rewards but later, when they
want to withdraw governance tokens they can exchange incentives tokens back.

Re-audit:
Fixed.

. . .

7

Polars Contract Audit

User can get Incentives tokens for free

CRITICAL

At contract incentives.sol function withdrawIncentives accepts tokenAddress and doesn’t check
if the token is actually an incentive one. So, users can pass, for example, an address of the
governance token and get it back without withdrawGovernance function.

After withdrawal governance, the user can call withdrawAllIncentives() (because his
govTokenBalances is still positive) and get every incentive token for free.

Additionally, If a user notices any token, which price > than the governance one (WBTC for
example, if someone sent it on incentives contract by mistake), he can “exchange” if for
governance token using same withdrawIncentives function.

Recommendation:
Check if tokenAddress is expected incentive token address.

Re-audit:
Fixed.

Incentives contract does not compile

CRITICAL

Contract does not compile because it doesn't implement the function withdrawAllIncentives.
Also some methods mark override but they don't override anything.

Recommendation:
Implement function withdrawAllIncentives() external override {}, or delete it from interface
IIncentives.

Delete override mark on methods: getGovBalances, getMaxBorrowed, lockGovernance,
setCrowdsale.

Re-audit:
Fixed.

. . .

8

Polars Contract Audit

Function “buyBack” can be called by anyone

HIGH

At contract PrimaryPoolERC20.sol function buyBack allows to buy back tokens for any user.
This will work if there is permission on erc20 token transfer. Although tokens can’t be stolen
this way, but it may lead to unwanted “buy backs”.

Recommendation:
Unless there is a special requirement, please replace

function buyBack(address destination, uint256 tokensAmount) public {

 require(destination != address(0),"Destination address is empty");

 …

 _collateralization.buyBack(destination, tokensAmount, collateralAmount);

 emit BuyBack(tokensAmount, blackAndWhitePrice);

}

Re-audit:
Fixed.

function buyBack(uint256 tokensAmount) public {

 …

 _collateralization.buyBack(msg.sender, tokensAmount, collateralAmount);

 emit BuyBack(tokensAmount, blackAndWhitePrice);

}

with, for example this:

In case buyBack indeed requires transferring of tokens from another address for user, please
add verification of the approved addresses.

. . .

9

Polars Contract Audit

Governance can replace pool and buyBack tokens for unexpected
price

MEDIUM

At contracts CollateralizationERC20.sol, PrimaryCollateralizationERC20.sol there are 4
functions that can be called only by pool: buy, buySeparately, buyBack, buyBackSeparately.

This is good, since the functions accept both amounts: tokensAmount and payment (and don’t
check if price is fair).

At the same time, there is possibility of updating the pool (by governance, function
changePoolAddress), and withdraw lots of collateral token for very small payment.

Recommendation:
Remove changePoolAddress function (if possible). If not, add a comment that briefly explains
how all funds are secured. For example: governance address will be a contract that requires
voting for pool update.

Re-audit:
Skipped.

. . .

10

Polars Contract Audit

Functions may become unexecutable due to potentially huge
amount of allTokens array

MEDIUM

At contract Incentives.sol there are 4 functions with this cycle: withdrawAllIncentives,
putIncentivesTokens, userState, availableTokens.

If the array of tokens becomes significant in size (more than 500, need to perform additional
tests to get exact array size), first it will take a lot of gas to execute, then it will hit gas limits.

Recommendation:
If no significant amount of tokens is expected (less than 100 for example), add a comment
that confirms this. If more than 100, additional tests are required to develop a suitable
solution.

Partner response for this issue:
In possible solutions Zokyo auditors write that there is no issue if there will be less than 100
tokens in the array. I commented out that we will not have 50 tokens and most probably there
will be at max 10-20 tokens according to yhe number of blockchain networks that we will use.
This number is much less than 100 tokens border provided by your auditors. But I see that
issue is still unresolved even if I have ptovided an expected response.

Re-audit:
Fixed.

. . .

11

Polars Contract Audit

Unnecessary variables declaration

LOW

At contract Bpool.sol at function getNormalizedWeight there is a denorm variable that is
actually used only once and can be removed.

Recommendation:
Use direct insertion, example:

return bdiv(_records[token].denorm, _totalWeight);

uint poolTotal = totalSupply();

uint ratio = bdiv(poolAmountOut, poolTotal);

Worth to mention, that not all variables have to be replaced in such a manner. Some of them
indeed improve transparency of code (example: oldWeight variable in rebind function). But
overall, where possible, use direct variable/function insertion (example: joinPool function):

uint ratio = bdiv(poolAmountOut, totalSupply());//totalSupply = poolTotal

Still perfectly readable if we use:

Re-audit:
Skipped.

. . .

12

Polars Contract Audit

Unnecessary variables declaration

LOW

Although the current code looks good, it can be a little bit more gas efficient. At contract
CollateralizationERC20.sol at function getStoredTokensAmount there are 2 new variables:
whiteTokensAmount and blackTokensAmount. But it isn't necessarily to do so just for returning
the variable.

Recommendation:
Replace

uint256 whiteTokensAmount = _whiteToken.balanceOf(address(this));

uint256 blackTokensAmount = _blackToken.balanceOf(address(this));

return (whiteTokensAmount, blackTokensAmount);

Re-audit:
Fixed.

return (

_whiteToken.balanceOf(address(this)), _blackToken.balanceOf(address(this))

);

with something, that is equally readable, for example:

Optionally this optimization could be implemented in other contracts where possible, for
example Incentives.sol (governanceTokens) or in PrimaryCollateralizationERC20.sol

. . .

13

Polars Contract Audit

Unnecessary variables declaration

LOW

Although the current code looks good, it can be a little bit more gas efficient. At contract
CollateralizationERC20.sol there are 3 new variables:

IERC20 _whiteToken;

IERC20 _blackToken;

IERC20 _collateralToken;

But it isn’t necessarily to do so, you can call token transfer directly:

IERC20(whiteTokenAddress).transfer(destination, tokensAmount)

This will save some gas on deployment + very small amount on every function call, here is
brief test that shows gas cost of deployment and transaction of two different methods:

. . .

14

Polars Contract Audit

Re-audit:
Fixed.

Recommendation:
Unless there is a special requirement, please replace pre stored variables with interface
wrapper.

Unnecessary variables declaration

LOW

At contract Reservoir.sol at function drip there are 2 new variable, that doesn’t seem to have
any sense: target_ and token_.

Recommendation:
Access target and token directly, remove:

address target_ = target;

IERC20 token_ = token;

Re-audit:
False finding. The original code is more gas efficient than the suggested one.

. . .

15

Polars Contract Audit

Gas efficiency could be improved

LOW

At contract Incentives.sol, withdrawAllIncentives function there is a loop that constantly checks
allTokens array length:

for(uint256 i=0;i<allTokens.length;i++)

Also, nonReentrant protection in this case seems unnecessary, since function works only with
known tokens that don’t do any callback calls.

Recommendation:
Pre store tokens length in a variable before cycle, this will be a little bit more gas efficient. And
remove nonReentrant modifier.

Re-audit:
Fixed, although there are still several other cases across project, for example in Incentives.sol
contract in userState, availableTokens functions.

. . .

16

Polars Contract Audit

Unnecessary variables declaration

LOW

Although the current code looks very good, it can be a little bit more gas efficient. At contract
PrimaryPoolERC20.sol there is a function getBWprice() that creates several variables.

We can try to do some optimization, to save gas fees. It is important to keep the function well
readable as it is now.

Recommendation:
Replace the function with, for example, this option:

function getBWprice() public view returns (uint256) {

 // Get data from collateralization contract

 uint256 curSupply = _collateralization.getWhiteSupply().add(_collateralization.getBlackSupply());

 /*

 Calculate token price. If current collateralization is less than default price use default price.

 If token collateralization is higher than default price define new price from collateralization.

 */

 if (curSupply == 0) {

 return _blackAndWhitePrice;

 }

 uint256 newPrice = wdiv(_collateralization.getCollateralization(), curSupply);

 return (newPrice > _blackAndWhitePrice) ? newPrice : _blackAndWhitePrice;

}

Also note spell fix at comment: define.

Re-audit:
Fixed (in better way than suggested one, spell check skipped though).

. . .

17

Polars Contract Audit

Gas efficiency could be improved

LOW

At contract Incentives.sol, putIncentivesTokens function there is a loop that constantly checks
allTokens array length:

for(uint256 i=0;i<allTokens.length;i++)

Also, this check doesn’t seem to make sense:

if(amount<users[msg.sender].borrowedList[tokenAddress]){

users[msg.sender].borrowedList[tokenAddress] =
users[msg.sender].borrowedList[tokenAddress].sub(amount);

}else{

 users[msg.sender].borrowedList[tokenAddress] = 0;

}

require(amount>0 && users[msg.sender].borrowedList[tokenAddress] >= amount,"bad amount or
tokenAddress");

users[msg.sender].borrowedList[tokenAddress] =
users[msg.sender].borrowedList[tokenAddress].sub(amount);

Re-audit:
Length - Fixed, else statement - Skipped.

Since the amount already been checked at line 130:

So the else statement will always be false.

Recommendation:
Pre store tokens length in a variable before cycle, this will be a little bit more gas efficient. And
remove remove the if condition, keep only:

. . .

18

Polars Contract Audit

Unnecessary variables declaration

LOW

At contract CollateralizationERC20.sol at function buy there are 2 new variable that used only
once:

uint256 blackAndWhitePrice = getBWprice();

uint256 oneTokenAmount = tokensAmount.div(2);

uint256 tokensAmount = wdiv(payment, getBWprice());

_collateralization.buy(msg.sender, tokensAmount.div(2), payment);

Re-audit:
Fixed.

Recommendation:
Unless code becomes hard to read, don’t create new variable, simply insert function as
argument into another function:

. . .

19

Polars Contract Audit

Unspecified revert reason

LOW

At contract CollateralizationERC20.sol at function buy there is a condition:

require(tokensAmount >= _minBlackAndWhiteBuy);

If the transaction reverts it may be unclear why.

require(tokensAmount >= _minBlackAndWhiteBuy, “tokens amount is less than minimum amount”);

Re-audit:
Fixed.

Recommendation:
Add message with brief description:

Unexpected words order

Informational

At 6 different contracts there are 39 occurrences of “...should be not...” expression, example:
"WHITE TOKEN ADDRESS SHOULD BE NOT NULL".

I believe the correct word order is "...SHOULD NOT BE...".

Recommendation:
Replace "...SHOULD BE NOT NULL" with "...SHOULD NOT BE NULL". And other 38 variation of
this message.

Re-audit:
Fixed.

. . .

20

Polars Contract Audit

No SPDX-License-Identifier found in: Reservoir.sol,
FarmingPool.sol

Informational

Trust in smart contracts can be better established if their source code is available. Since
making source code available always touches on legal problems with regards to copyright, the
Solidity compiler encourages the use of machine-readable SPDX license identifiers.

Recommendation:
Every source file should start with a comment indicating its license.

Example:

// SPDX-License-Identifier: UNLICENSED

Re-audit:
Fixed.

. . .

21

Polars Contract Audit

Misleading formulas in the comments with the formulas in the
function

Informational

Contract Bmath.sol function calcSingleInGivenPoolOut:

Formula according to the code in the denominator:

Contract Bmath.sol function calcPoolInGivenSingleOut:

Recommendation:
Change comments according to the formula.Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files.

Re-audit:
Fixed.

. . .

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

Tests written by Polars team

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

22

Polars Contract Audit

FILE

contracts\

BConst.sol

BFactory.sol

BMath.sol

BNum.sol

BPool.sol

BToken.sol

98.66

100.00

% STMTS

100.00

90.91

100.00

100.00

100.00

90.17

100.00

% BRANCH

75.00

100.00

90.63

90.96

80.00

93.81

100.00

% FUNCS

100.00

53.85

100.00

100.00

100.00

98.66

100.00

100.00

90.91 ... 233, 294, 358

100.00

100.00

100.00

% LINES UNCOVERED LINES

All files 98.66 90.17 93.81 98.66

Test Results

Contract: BPool

✓ swapExactAmountIn
✓ swapExactAmountOut
✓ joinPool
✓ exitPool
✓ joinswapExternAmountIn
✓ joinswapPoolAmountOut
✓ joinswapExternAmountIn should revert
✓ joinswapPoolAmountOut should revert
✓ exitswapExternAmountOut should revert

. . .

23

Polars Contract Audit

✓ exitswapPoolAmountIn should revert
✓ exitswapExternAmountOut
✓ poolAmountOut = joinswapExternAmountIn(joinswapPoolAmountOut(poolAmountOut))
✓ tokenAmountIn = joinswapPoolAmountOut(joinswapExternAmountIn(tokenAmountIn))
✓ poolAmountIn = exitswapExternAmountOut(exitswapPoolAmountIn(poolAmountIn))
✓ tokenAmountOut = exitswapPoolAmountIn(exitswapExternAmountOut(tokenAmountOut))

Contract: BFactory

✓ isBPool on non pool returns false
✓ isBPool on pool returns true
✓ fails nonAdmin calls collect
✓ admin collects fees
✓ nonadmin cant set admin address
✓ admin changes admin address

Contract: BPool

✓ swapExactAmountIn
✓ swapExactAmountOut
✓ joinPool
✓ exitPool
✓ joinswapExternAmountIn
✓ joinswapPoolAmountOut
✓ exitswapPoolAmountIn
✓ exitswapExternAmountOut
✓ pAo = joinswapExternAmountIn(joinswapPoolAmountOut(pAo))
✓ tAi = joinswapPoolAmountOut(joinswapExternAmountIn(tAi))
✓ pAi = exitswapExternAmountOut(exitswapPoolAmountIn(pAi))
✓ tAo = exitswapPoolAmountIn(exitswapExternAmountOut(tAo))

Contract: TMath

✓ badd throws on overflow
✓ bsub throws on underflow
✓ bmul throws on overflow
✓ bdiv throws on div by 0
✓ bpow throws on base outside range

. . .

24

Polars Contract Audit

Contract: BPool

✓ Controller is msg.sender
✓ Pool starts with no bound tokens
✓ Fails binding tokens that are not approved
✓ Admin approves tokens
✓ Fails binding weights and balances outside MIX MAX
✓ Fails finalizing pool without 2 tokens
✓ Admin binds tokens
✓ Admin unbinds token
✓ Fails binding above MAX TOTAL WEIGHT
✓ Fails rebinding token or unbinding random token
✓ Get current tokens
✓ Fails getting final tokens before finalized

✓ Fails when other users interact before finalizing
✓ Fails calling any swap before finalizing
✓ Fails calling any join exit swap before finalizing
✓ Only controller can setPublicSwap
✓ Fails setting low liquidity providers fee
✓ Fails setting high liquidity providers fee
✓ Fails setting high governance fee
✓ Fails setting high collateralization fee
✓ Fails setting high swaps fees
✓ Fails nonadmin sets fees or controller
✓ Fails nonadmin sets governance or collateralization wallets
✓ Admin sets liquidity providers fee
✓ Admin sets governance fee
✓ Admin sets collateralization fee
✓ Admin sets swaps fees
✓ Admin sets governance or collateralization wallets
✓ Fails nonadmin finalizes pool
✓ Admin finalizes pool
✓ Fails finalizing pool after finalized
✓ Cant setPublicSwap, set fees when finalized
✓ Fails binding new token after finalized
✓ Fails unbinding after finalized
✓ Get final tokens

. . .

25

Polars Contract Audit

✓ Other users approve tokens
✓ User1 joins pool
✓ Fails admin unbinding token after finalized and others joined
✓ getSpotPriceSansFee and getSpotPrice
✓ Fail swapExactAmountIn unbound or over min max ratios
✓ swapExactAmountIn
✓ swapExactAmountOut
✓ Fails joins exits with limits
✓ Fails calling any swap on unbound token
✓ Fails calling weights, balances, spot prices on unbound token

✓ Token descriptors
✓ Token allowances
✓ Token transfers

Contract: BPool

✓ Admin approves tokens
✓ Admin binds tokens
✓ Fails binding more than 8 tokens
✓ Rebind token at a smaller balance
✓ Fails gulp on unbound token
✓ Pool can gulp tokens
✓ Fails swapExactAmountIn with limits
✓ Fails swapExactAmountOut with limits

94 passing (3m)

. . .

Tests written by Zokyo Security team

As part of our work assisting Polars in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Polars contract
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

26

Polars Contract Audit

FILE

FarmingPool.sol

Reservoir.sol

CollateralizationERC20.sol

PrimaryCollateralizationERC20.sol

PrimaryPoolERC20.sol

BPool.sol

VotingeScrow.sol

BMath.sol

BFactory.sol

Incentives.sol

98.85

100.00

% STMTS

100.00

100.00

100.00

100.00

98.00

98.48

100.00

95.70

70.83

50.00

% BRANCH

94.23

92.86

100.00

51.06

80.00

100.00

75.00

88.46

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

100.00

92.31

100.00

94.12

98.85

100.00

100.00

100.00

100.00

100.00

98.00

98.48

100.00

94.79

240

40, 41, 42 ,43, 165

% LINES UNCOVERED LINES

All files 99.07 80.03 98.08 99.07

Contract: FarmingPool

✓ should deploy

Test Results

. . .

27

Polars Contract Audit

✓ should call poolLength

✓ should deposit to first pool [500000000]
✓ should call emergencyWithdraw
✓ should deposit to second pool [500000000]
✓ should withdraw
✓ should withdraw [with rewards]
✓ should call getMultiplier
✓ should deposit to first pool [2]
✓ should withdrow [2]
✓ should deposit [when block.timestamp <= pool.lastReward]
✓ should withdrow [when block.timestamp <= pool.lastReward]

Contract: BPool

✓ should deploy
✓ should get constant info about token

✓ should check balance of admin
✓ should transfer tokens to user
✓ should NOT tranfer [ERR_INSUFFICIENT_BAL]
✓ should increase allowance [0.2 eth] and transfer [0.1 eth]
✓ should call allowance
✓ should decrease allowance and NOT transfer

Contract: BPool

✓ should deploy

✓ LiquidityProviders
✓ Governance
✓ Collateralization
✓ SwapFee

✓ GovernanceWallet

. . .

28

Polars Contract Audit

✓ Controller
✓ CollateralizationWallet

✓ PublicSwap

✓ should bind tokens
✓ isBound
✓ should call getNumTokens
✓ should call getCurrentTokens
✓ should call getDenormalizedWeight
✓ should call getTotalDenormalizedWeight
✓ should call getNormalizedWeight
✓ should call getBalance
✓ should call getSpotPrice
✓ should call getSpotPriceSansFee
✓ should call gulp
✓ should unbind token
✓ should rebind token

✓ should call finilez
✓ should call getFinalTokens
✓ should join pool
✓ should exit pool

✓ should call swapExactAmountIn
✓ should call swapExactAmountOut
✓ should call joinswapExternAmountIn
✓ should call joinswapPoolAmountOut
✓ should call exitswapPoolAmountIn
✓ should call exitswapExternAmountOut

Contract: Collateralization

✓ should deploy

✓ should buy
✓ should buy [separate]
✓ should call buyBack

. . .

29

Polars Contract Audit

✓ should call buyBackSeparately
✓ should change pool address
✓ should change governance address
✓ should call getCollateralization
✓ should call getStoredTokensAmount

✓ should NOT create instanse [WHITE TOKEN zero address]
✓ should NOT create instanse [BLACK TOKEN zero address]
✓ should NOT create instanse [COLLATERAL TOKEN zero address]
✓ should NOT call func [caller is not pool]
✓ should NOT call func [caller is not govern]
✓ should NOT buy [DESTINATION ADDRESS SHOULD NOT BE NULL]
✓ should NOT buy [NOT ENOUGH WHITE TOKENS ON COLLATERALIZATION

CONTRACT BALANCE]
✓ should NOT buy [NOT ENOUGH BLACK TOKENS ON COLLATERALIZATION

CONTRACT BALANCE]
✓ should NOT buy [NOT ENOUGH DELEGATED TOKENS]
✓ should NOT buy separate [DESTINATION ADDRESS SHOULD NOT BE NULL]
✓ should NOT buy separate [NOT ENOUGH DELEGATED TOKENS]
✓ should NOT buy separate [NOT ENOUGH WHITE TOKENS ON COLLATERALIZATION

CONTRACT BALANCE]
✓ should NOT buy separate [NOT ENOUGH BLACK TOKENS ON COLLATERALIZATION

CONTRACT BALANCE]
✓ should NOT buy back [DESTINATION ADDRESS SHOULD NOT BE NULL]
✓ should NOT buy back [NOT ENOUGH COLLATERALIZATION IN THe CONTRACT]
✓ should NOT buy back [NOT ENOUGH DELEGATED WHITE TOKENS ON

DESTINATION BALANCE]
✓ should NOT buy back [NOT ENOUGH DELEGATED BLACK TOKENS ON

DESTINATION BALANCE]
✓ should NOT buy back separate [DESTINATION ADDRESS SHOULD NOT BE NULL]
✓ should NOT buy back separate [NOT ENOUGH COLLATERALIZATION ON THE CONTRACT]
✓ should NOT buy back separate [NOT ENOUGH DELEGATED WHITE TOKENS ON

DESTINATION BALANCE]
✓ should NOT buy back separate [NOT ENOUGH DELEGATED BLACK TOKENS ON

DESTINATION BALANCE]

Contract: PrimaryPoolERC20

✓ should deploy

. . .

30

Polars Contract Audit

✓ should buy [1]
✓ should NOT buy [Buy amount is too low]
✓ should change buy limit
✓ should buy [2]
✓ should buy [3]
✓ should call buyBack

✓ should NOT change governanceAddress [zero addr]
✓ should change governanceAddress
✓ should NOT call func [sender not allowed]
✓ should NOT create primaryPool [Collateralization address is zero]
✓ should NOT call buyBack [Not enought collateral on the conrtact]

✓ should NOT create new instanse [Collateral token zero address]
✓ should NOT call func [only pool can]
✓ should NOT call func [only governance can]
✓ should NOT buy [Destination SHOULD NOT BE NULL]
✓ should NOT change pool address [zero addr]
✓ should NOT change govern address [zero addr]

✓ should change govern address
✓ should change bwt owner
✓ should change pool address

Contract: BMath

✓ Should calculate spot price correctly
✓ Should calculate the amount of tokens out from given in correctly
✓ Should calculate the amount of tokens in from given out correctly
✓ Should calculate pool amount out from pool shares correctly
✓ Should calculate pool amount in from pool shares correctly
✓ Should calculate token amount out correctly
✓ Should calculate pool amount in correctly

. . .

31

Polars Contract Audit

Contract: Factory
✓ should deploy with correct admin
✓ should set new admin correctly
✓ shouldn't set new admin if caller is not current admin
✓ should create new BPool correctly
✓ should collects fees correctly

Contract: BNum
✓ Should throw on overflow
✓ Should throw on underflow
✓ Should throw on overflow
✓ Should throw on division by 0
✓ Should throw on to low base
✓ Should throw onto high base

Contract: VotingeScrow

✓ should deploy

✓ should NOT deposit [before fist lock]
✓ should create first lock
✓ should NOT deposit [0 eth]
✓ should deposit for
✓ should withdraw

✓ should change controller
✓ should set crowdsale
✓ should create lock [for origin]
✓ should increase lock amount and duration
✓ should call balanceOf
✓ should call blanceOfAt
✓ should call totalSupplyAt

✓ should NOT call func [without permision]
✓ should NOT transfer ownership [not commited yet]
✓ should transfer ownership

. . .

32

Polars Contract Audit

Contract: Incentives

✓ should deploy

✓ should create new incentive token
✓ should set crowdsale
✓ should lock governance
✓ should put governance
✓ should lock governance
✓ should withdraw governance
✓ should withdraw incentives tokens
✓ should put incetives tokens
✓ should call userState
✓ should call availableTokens
✓ should call userscount
✓ should call getMaxBorrowed
✓ should call getGovBalances
✓ should call getAddress
✓ should switch owner

✓ should NOT call func [not owner]
✓ should NOT create new incentive token
✓ should NOT put governance
✓ should NOT lock governance
✓ should NOT withdraw
✓ should NOT call putIncentivesTokens
✓ should NOT call getMaxBorrowed
✓ should NOT call getGovBalances
✓ should NOT call userState

162 passing (4m 27s)

We are grateful to have been given the opportunity to work
with the Polars team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Polars team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

