
SMART CONTRACT AUDIT

July 23th, 2021 | v.	1.0

97
Score

PASS
Zokyo’s Security Team has
concluded that this smart
contract passes security
qualifications to be listed on
digital asset exchanges

This document outlines the overall security of the Polars smart contracts, evaluated by Zokyo's
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Polars smart contract codebase for
quality, security, and correctness.

. . .

1

Polars Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 96%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the Polars team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

Polars Contract Audit

3Auditing Strategy and Techniques Applied

4Summary

5Structure​ ​and​ ​Organization​ ​of​ ​Document

6Manual Review

10Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

10Tests written by Zokyo Secured team

3

Polars Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract’s source code was taken from the Polars repository –
https://github.com/yurivin/Polars_Zokyo/commit/2731b277d50eabe69cf0aacc2d496b362572d
22

Last commit – 00134fb15fc0a57d1d1b7b9b63b3d6f695560721

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Polars smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

https://github.com/yurivin/Polars_Zokyo/commit/2731b277d50eabe69cf0aacc2d496b362572d22
https://github.com/yurivin/Polars_Zokyo/commit/2731b277d50eabe69cf0aacc2d496b362572d22
https://github.com/yurivin/Polars_Zokyo/commit/00134fb15fc0a57d1d1b7b9b63b3d6f695560721

Summary

. . .

4

Polars Contract Audit

Generally, the contracts provided for an audit are well written and structured. All the findings
within the auditing process are presented in this document.

There were no critical issues found during the audit. All the mentioned findings may have an
effect only in case of specific conditions performed by the contract owner. The findings during
the audit have no impact on contract performance or security, so it is fully production-ready.

Taking into account the fact that mostly all of the issues were resolved and evaluating the
contracts from the operational and security standpoints, we can give the score of 97%.

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

5

Polars Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Manual Review

. . .

6

Polars Contract Audit

Pool may not be able to withdraw bwTokens

MEDIUM

In the SecondaryCollateralizationBWT.sol file there is a delegate function that moves bw and
collateral tokens. But black and white tokens are left in the first pool.

So, in the first pool function withdraw will revert due to missing _bwTokens, in second pool due
to _blackTokens or_whiteTokens.

Additional note: this function doesn’t seem to be used at all.

Recommendation:
If this is expected behaviour - add a comment with description, If no, there are several
possible solutions, depending on requirements, example:

Don’t allow to delegate if balance of white or black token > 0;
Keep required amount of bwTokens to burn all black / white tokens;
Check if newCollateralization supports black / white tokens, if so - move them along
with other tokens;
Remove this function.

. . .

7

Polars Contract Audit

Misleading event

LOW

In SecondaryPoolBWT.sol file there are two misleading events:

emit BlackPriceCase1(eend.whitePrice); //line 429

emit WhitePriceCase1(eend.blackPrice); //line 470

Recommendation:
Depending on requirements, switch tokens or events. For example in case tokens: set black on
line 429 and white on line 470.

Misleading error message [1]

LOW

In SecondaryCollateralizationBWT.sol file in constructor there is a require:

require (bwtAddress != address(0), "WHITE TOKEN ADDRESS SHOULD NOT BE NULL");

Recommendation:
Replace "WHITE TOKEN" with "BWT TOKEN".

. . .

8

Polars Contract Audit

Potentially misleading event

LOW

In SecondaryCollateralizationBWT.sol file there are 2 functions (withdrawCollateral and
withdraw). Despite different token, share the same “WithdrawLiquidity” event.

Recommendation:
There are several possible solutions, examples:

Add additional event;
Add variable to highlight token in current event;
Remove event in withdrawCollateral.

Misleading error message [2]

LOW

In SecondaryCollateralizationBWT.sol there is a modifier:

modifier onlyGovernance () {

 require (_governanceAddress == msg.sender, "Caller should be pool");

 _;

}

Recommendation:
Replace "should be pool" with "should be governance".

. . .

9

Polars Contract Audit

Unexpected words order

INFORMATIONAL

In SecondaryPoolBWT.sol file there are 11 occurrences of “...should be not...” expression,
example: "WHITE token address should be not null".

I believe the correct word order is “...should not be...”.

Recommendation:
Replace "...should be not null" with "...should not be null" (and 10 other variations of this
message).

Misleading comment

INFORMATIONAL

In SecondaryPoolBWT.sol file there is:

// liquidity provider fee: initial 40% of total FEE

uint256 public _lpFee = 0.5 * 1e18;

// team fee: initial – 20% of total FEE

uint256 public _controllerFee = 0.1 * 1e18;

Recommendation:
Replace 40% with 50% and 20% with 10%.

. . .

Tests written by Zokyo Security team

As part of our work assisting Polars in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the Polars contract
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

10

Polars Contract Audit

FILE

SecondaryPoolBWT.sol

SecondaryCollateralizationBWT.sol

... 466, 469, 470

... 113, 130, 134

UNCOVERED LINES

All files

94.00

98.00

% STMTS

96.00

84.00

100.00

% BRANCH

92.00

100.00

100.00

% FUNCS

100.00

94.00

98.00

% LINES

96.00

Contract: SecondaryPool

✓ Trying to Init function by passing controllerWalletAddress as zero
✓ Trying to Init function by passing lpWalletAddress as zero
✓ Trying to Init function by passing governanceWalletAddress as zero
✓ Triggering the init function
✓ Trying to triggering Init function again which is started already

✓ Trying to trigger the changeGovernanceAddress function from Non-governance address
✓ Trying to trigger the changeGovernanceAddress function with new governance

address as zero
✓ Changing the governance address

Test Results

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

11

Polars Contract Audit

✓ Trying to trigger the changePrimaryPoolAddress function with new primary pool
address as zero

✓ Changing the PrimaryPool address

✓ Trying to trigger the changeEventContractAddress function with new
eventContractAddress as zero

✓ Changing the event contract address

✓ Trying to trigger the changePrimaryPoolAddress function with new primary pool
address as zero

✓ Changing the Collateralization Contract address

✓ Trying to trigger the changeGovernanceWalletAddress function with new primary pool
address as zero

✓ Changing the GovernanceWallet address

✓ addLiquidity by not having enough delegated BWT
✓ addLiquidity with 300 tokens

✓ Trying to buy black token with destination address as zero
✓ Trying to buy black token with NOT ENOUGH DELEGATED TOKENS
✓ Trying to buy black token with maxprice greater than the token price
✓ Trying to buy black token with not having enough delgated tokens
✓ buy black tokens

✓ Trying to buy black token with destination address as zero
✓ Trying to buy black token with NOT ENOUGH DELEGATED TOKENS
✓ Trying to buyback black tokens more than sold in the pool
✓ Trying to buyback black token with not having enough delgated tokens
✓ Trying to buyback black token with minimum price greater than the price of the token
✓ buyback black tokens

✓ Trying to buy white token with maxprice greater than the token price
✓ buy white tokens

✓ Trying to buyback white tokens more than sold in the pool
✓ Trying to buyback white token with not having enough delgated tokens
✓ Trying to buyback white token with minimum price greater than the price of the token

. . .

12

Polars Contract Audit

✓ buyback white tokens

✓ Trying to withdraw liquidity without having enough delegated pool tokens
on user balance

✓ Trying to withdraw liquidity without having enough BLACK or WHITE tokens
to withdraw

✓ Trying to withdraw liquidity without having enough WHITE tokens on
Collateralization contract balance

✓ withdrawLIquidity

✓ distributing project incentives

✓ get the black and white tokens balances

✓ Trying to trigger the submitEventStarted function from Non-contract address
✓ Trying to trigger the submitEventStarted function with high event price

change percent
✓ Trying to trigger the submitEventStarted function with lower event price

change percent
✓ trigger the submitEventStarted function with appropriate price change

✓ Trying to submit event result with an inapropriate result value
✓ Submit event result with result value as 0
✓ Submit event result with result value as white token won i.e 1
✓ Submit event result with result value as black token won i.e -1

Contract: SecondaryCollateralizationBWT

✓ addLiquidity by passing the destination address as 0x0

✓ Trying to withdraw by passing the destination address as 0x0

✓ Trying to withdrawCollateral by passing the destination address as 0x
✓ Trying to withdrawCollateral by Not enough Collateral tokens on Collateralization

contract balance

✓ Trying to trigger the changePoolAddress function from Non-governance address
✓ Trying to trigger the changePoolAddress function with new pool address as zero

. . .

13

Polars Contract Audit

✓ Changing the pool address

✓ Trying to trigger the changeGovernanceAddress function from Non-governance
address

✓ Trying to trigger the changeGovernanceAddress function with new governance
address as zero

✓ Changing the governance address

59 passing (34s)

We are grateful to have been given the opportunity to work
with the Polars team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Polars team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

